Framing the future

ENTSO-E TYNDP SCENARIOS

Irina Minciuna

ACER workshop on scenarios and CBA methodology for assessing electricity infrastructure projects

10 May 2016

TYNDP2016 timeline

Scenario building – framing the uncertainty

- How will 2020 and 2030 look like?
- What parameters to consider (demand, technology, policies)?
- How to deal with inherent uncertainties?

The further you look, the more scenarios we need to ensure a robust study framework

Steps to build TYNDP scenarios

Steps to build TYNDP scenarios

For each Vision: create a storyline based on different parameters

Economy and Market

Economic and financial conditions

New market designs

National schemes regarding R&D expenses

Merit order: primary fuel pricing - carbon pricing

Demand

Energy efficiency developments

New usages (Heat pumps, Electric vehicles)

Demand response potential

Generation

RES (wind, solar, RoR, biomass)

Flexibility of generators

Back up capacity (nuclear, CCS)

Decentralized and centralized storage

Grid

smart grid and the impact on load & generation patterns

Information is gathered through workshops/consultations

- Stakeholders
- National correspondents (LAC)
- Regional groups
- Team involved in previous TYNDP
- •

- Economic conditions being more favourable than in Vision 1 and 2. Member states having more financial means to reinforce existing energy policies.
- Loose European energy governance is a barrier to the introduction of fundamental new market designs that fully benefit from R&D developments.
- Demand is lower than Vision 1 as a balance between a stronger electrification of transportation and heating cooling with stronger developments in energy efficiency.
- CO2 prices lead to a shift of merit order with gas less expensive than coal-based power generation.

Vision 4 "European Green Revolution"

- financial conditions most favourable across all Visions.
- Significant investments in sustainable energy generation undertaken.
- Strong European framework makes the introduction of fundamental new market designs that fully benefit from R&D developments more likely.
- RES is located in Europe in an optimal way lowering the cost for society.
- Backup capacity to secure adequacy is handled on a European level.
- Large scale RES expansion drives the price of RES electricity production to a competitive level.

Vision 1 "Slowest Progress"

- No common European decisions regarding CO2 emission reductions nor future generation mix
- Economic conditions unfavourable, though still modest economic growth. Limited willingness to invest in either high carbon or low carbon emitting sources due to investment risks, low CO2-prices and lack of aligned support measures.
- Little new thermal capacity coming online except in the case for subsidized production or adequacy required peak capacity
- No major breakthrough in technological developments are expected.

Vision 2 "Constrained Progress"

- Economic and financial conditions are more favourable compared to Vision 1 providing more room to reinforce/enhance existing energy policies.
- Energy policies are more strongly coordinated across Europe; installation of additional RES more coordinated where the locations offer more resources.
- Electricity demand is lower than Vision 1 due to limited but stronger energy efficiency developments.

2030 Vision characteristics

→ V1 - Slowest Progress → V2 - Constrained Progress → V3 - National green transition → V4 - European green revolution

Four main differences compared to TYNDP 2014 scenarios

Demand does not see a continues increase and is lower than in 2014 assumptions

The adequacy level is explicitly described in the visions and a country can be no longer autonomous

New RES optimization methodology (including re-allocates the RES over the different countries)

New thermal optimization methodology based on economic criterion (trade-off between fixed costs and variable generation costs)

Scenario building – Examples of outputs (I)

Reliable Sustainable Connected

Scenario building – Examples of outputs (II)

Reliable Sustainable Connected

Scenario building – Examples of outputs (III)

Demand across all scenarios

Wind/PV across all scenarios

Scenario building – Examples of outputs (IV)

PV re-allocation from Vision 3 to Vision 4

Back-up slides

	Slowest progress	Constrained progress	National green transition	European green revolution
	V1	V2	V3	V4
Economic and financial conditions	Least favourable	Less favourable	More favourable	Most favourable
Focus of energy policies	National	European	National	European
Focus of R&D	National	European	National	European
CO ₂ and primary fuel prices	low CO ₂ price, high fuel price	low CO ₂ price, high fuel price	high CO2 price, low fuel price	high CO2 price, low fuel price
RES	Low national RES (>= 2020 target)	Between V1 and V3	High national RES	On track to 2050
Electricity demand	Increase (stagnation to small growth)	Decrease compared to 2020 (small growth but higher energy efficiency)	stagnation compared to 2020(Increase (growth demand)
Demand response (and smart grids)	As today	Partially used	Partially used	Fully used
	0%	5%	5%	20%
Electric vehicles	No commercial break through of electric plug-in vehicles	Electric plug-in vehicles (flexible charging)	Electric plug-in vehicles (flexible charging)	Electric plug-in vehicles (flexible charging and generating)
Heat pumps	0%	5%	5%	10%
Heat pullips	Minimum level	Intermediate level	Intermediate level	Maximum level
	1%	5%	5%	9%
Adequacy	National - not autonomous limited back-up capacity	European - less back-up capacity than V1	National - autonomous high back-up capacity	European - less back-up capacity than V3
Merit order	Coal before gas	Coal before gas	Gas before coal	Gas before coal
Storage	As planned today	As planned today	Decentralized	Centralized
				Reliable Sustainable Connected Page 14

Assessment of individual projects

- Reflect maturity of projects
- Assess at two time horizons
- → Classify projects & define reference capacities

Mid-term project

Long-term project

Future project

Planned

Commissioning =< 2022

Planned

Planned

Planned

Others

Reference capacity

- Expected/planned development of the grid
- Parameter for market modelling tools
- Confirmed by network studies
- Possibly different values in either direction

TYNDP website

https://www.entsoe.eu/major-projects/ten-year-network-development-plan/Pages/index.html

Thank you for your attention

http://www.entsoe.eu Irina.minciuna@entsoe.eu